Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Tropical South American climate is influenced by the South American Summer Monsoon and the El Niño Southern Oscillation. However, assessing natural hydroclimate variability in the region is hindered by the scarcity of long-term instrumental records. Here we present a tree-ringδ18O-based precipitation reconstruction for the South American Altiplano for 1700–2013 C.E., derived fromPolylepis tarapacanatree rings. This record explains 56% of December–March instrumental precipitation variability in the Altiplano. The tree-ringδ18O chronology shows interannual (2–5 years) and decadal (~11 years) oscillations that are remarkably consistent with periodicities observed in Altiplano precipitation, central tropical Pacific sea surface temperatures, southern-tropical Andean ice coreδ18O and tropical Pacific coralδ18O archives. These results demonstrate the value of annual-resolution tree-ringδ18O records to capture hydroclimate teleconnections and generate robust tropical climate reconstructions. This work contributes to a better understanding of global oxygen-isotope patterns, as well as atmospheric and oceanic processes across the tropics.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Climate change is increasing the intensity and frequency of extreme heat events. Ecological responses to extreme heat will depend on vegetation physiology and thermal tolerance. Here we report thatLarix sibirica, a foundation species across boreal Eurasia, is vulnerable to extreme heat at its southern range margin due to its low thermal tolerance (Tcritof photosynthesis: ~ 37–48 °C). Projections from CMIP6 Earth System Models (ESMs) suggest that leaf temperatures might exceed the 25thpercentile ofLarix sibirica’s Tcritby two to three days per year within the next two to three decades (by 2050) under high emission scenarios (SSP3-7.0 and SSP5-8.5). This degree of warming will threaten the biome’s continued ability to assimilate and sequester carbon. This work highlights that under high emission trajectories we may approach an abrupt ecological tipping point in southern boreal Eurasian forests substantially sooner than ESM estimates that do not consider plant thermal tolerance traits.more » « less
-
Abstract Evergreen needleleaf forests (ENFs) play a sizable role in the global carbon cycle, but the biological and physical controls on ENF carbon cycle feedback loops are poorly understood and difficult to measure. To address this challenge, a growing appreciation for the stress physiology of photosynthesis has inspired emerging techniques designed to detect ENF photosynthetic activity with optical signals. This Overview summarizes how fundamental plant biological and biophysical processes control the fate of photons from leaf to globe, ultimately enabling remote estimates of ENF photosynthesis. We demonstrate this using data across four ENF sites spanning a broad range of environmental conditions and link leaf- and stand-scale observations of photosynthesis (i.e., needle biochemistry and flux towers) with tower- and satellite-based remote sensing. The multidisciplinary nature of this work can serve as a model for the coordination and integration of observations made at multiple scales.more » « less
-
Cernusak, Lucas (Ed.)Abstract Tree growth is generally considered to be temperature limited at upper elevation treelines, yet climate factors controlling tree growth at semiarid treelines are poorly understood. We explored the influence of climate on stem growth and stable isotopes for Polylepis tarapacana Philipi, the world’s highest elevation tree species, which is found only in the South American Altiplano. We developed tree-ring width index (RWI), oxygen (δ18O) and carbon (δ13C) chronologies for the last 60 years at four P. tarapacana stands located above 4400 m in elevation, along a 500 km latitude aridity gradient. Total annual precipitation decreased from 300 to 200 mm from the northern to the southern sites. We used RWI as a proxy of wood formation (carbon sink) and isotopic tree-ring signatures as proxies of leaf-level gas exchange processes (carbon source). We found distinct climatic conditions regulating carbon sink processes along the gradient. Current growing-season temperature regulated RWI at northern-wetter sites, while prior growing-season precipitation determined RWI at arid southern sites. This suggests that the relative importance of temperature to precipitation in regulating tree growth is driven by site water availability. By contrast, warm and dry growing seasons resulted in enriched tree-ring δ13C and δ18O at all study sites, suggesting that similar climate conditions control carbon-source processes along the gradient. Site-level δ13C and δ18O chronologies were significantly and positively related at all sites, with the strongest relationships among the southern drier stands. This indicates an overall regulation of intercellular carbon dioxide via stomatal conductance for the entire P. tarapacana network, with greater stomatal control when aridity increases. This manuscript also highlights a coupling (decoupling) between physiological processes at leaf level and wood formation as a function of similarities (differences) in their climatic sensitivity. This study contributes to a better understanding and prediction of the response of high-elevation Polylepis woodlands to rapid climate changes and projected drying in the Altiplano.more » « less
-
Abstract The high‐mountain system, a storehouse of major waterways that support important ecosystem services to about 1.5 billion people in the Himalaya, is facing unprecedented challenges due to climate change during the 21st century. Intensified floods, accelerating glacial retreat, rapid permafrost degradation, and prolonged droughts are altering the natural hydrological balances and generating unpredictable spatial and temporal distributions of water availability. Anthropogenic activities are adding further pressure onto Himalayan waterways. The fundamental question of waterway management in this region is therefore how this hydro‐meteorological transformation, caused by climate change and anthropogenic perturbations, can be tackled to find avenues for sustainability. This requires a framework that can diagnose threats at a range of spatial and temporal scales and provide recommendations for strong adaptive measures for sustainable future waterways. This focus paper assesses the current literature base to bring together our understanding of how recent climatic changes have threatened waterways in the Asian Himalayas, how society has been responding to rapidly changing waterway conditions, and what adaptive options are available for the region. The study finds that Himalayan waterways are crucial in protecting nature and society. The implementation of integrated waterways management measures, the rapid advancement of waterway infrastructure technologies, and the improved governance of waterways are more critical than ever. This article is categorized under:Engineering Water > Sustainable Engineering of Watermore » « less
-
Abstract Hydroclimate variability in tropical South America is strongly regulated by the South American Summer Monsoon (SASM). However, past precipitation changes are poorly constrained due to limited observations and high‐resolution paleoproxies. We found that summer precipitation and the El Niño‐Southern Oscillation (ENSO) variability are well registered in tree‐ring stable oxygen isotopes (δ18OTR) ofPolylepis tarapacanain the Chilean and Bolivian Altiplano in the Central Andes (18–22°S, ∼4,500 m a.s.l.) with the northern forests having the strongest climate signal. More enrichedδ18OTRvalues were found at the southern sites likely due to the increasing aridity toward the southwest of the Altiplano. The climate signal ofP. tarapacana δ18OTRis the combined result of moisture transported from the Amazon Basin, modulated by the SASM, ENSO, and local evaporation, and emerges as a novel tree‐ring climate proxy for the southern tropical Andes.more » « less
-
Much of the eastern United States experienced increased precipitation over the twentieth century. Characterizing these trends and their causes is critical for assessing future hydroclimate risks. Here, U.S. precipitation trends are analyzed for 1895–2016, revealing that fall precipitation in the southeastern region north of the Gulf of Mexico (SE-Gulf) increased by nearly 40%, primarily increasing after the mid-1900s. Because fall is the climatological dry season in the SE-Gulf and precipitation in other seasons changed insignificantly, the seasonal precipitation cycle diminished substantially. The increase in SE-Gulf fall precipitation was caused by increased southerly moisture transport from the Gulf of Mexico, which was almost entirely driven by stronger winds associated with enhanced anticyclonic circulation west of the North Atlantic subtropical high (NASH) and not by increases in specific humidity. Atmospheric models forced by observed SSTs and fully coupled models forced by historical anthropogenic forcing do not robustly simulate twentieth-century fall wetting in the SE-Gulf. SST-forced atmospheric models do simulate an intensified anticyclonic low-level circulation around the NASH, but the modeled intensification occurred farther west than observed. CMIP5 analyses suggest an increased likelihood of positive SE-Gulf fall precipitation trends given historical and future GHG forcing. Nevertheless, individual model simulations (both SST forced and fully coupled) only very rarely produce the observed magnitude of the SE-Gulf fall precipitation trend. Further research into model representation of the western ridge of the fall NASH is needed, which will help us to better predict whether twentieth-century increases in SE-Gulf fall precipitation will persist into the future.more » « less
An official website of the United States government
